If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+36x+4=0
a = 3; b = 36; c = +4;
Δ = b2-4ac
Δ = 362-4·3·4
Δ = 1248
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1248}=\sqrt{16*78}=\sqrt{16}*\sqrt{78}=4\sqrt{78}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(36)-4\sqrt{78}}{2*3}=\frac{-36-4\sqrt{78}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(36)+4\sqrt{78}}{2*3}=\frac{-36+4\sqrt{78}}{6} $
| 6(x-1)-2(5x-4)=-10 | | 8(8n-2)=40n+8n | | -1/4(8a+20)=-2a+5 | | 7/8=3x | | 2t-5=-10t | | 7-4(x+1)=9-5x | | 8/3=-4/3+x | | Z=-1-3i | | 4n+1=95 | | 3z/10+6=-2Z= | | 4x÷5=x+26 | | 6x+4=-22 | | 4x^2+28x-56=0 | | F(x)=4x^2–x^2,5 | | 35y+3=13y= | | 3/6x+5/10=-4/8(3x+4) | | 7n+12=1/2(12n+24) | | 2x+36=38 | | -1.4x=1 | | 4|x-5|=16 | | 100h+150=-200 | | s/10+4=2 | | 40°+(11x-18)°=180 | | 20x+15=-45 | | 18=9+3n | | 4-7=-(8n+4)+2 | | 7z/6+6=-1 | | 18=9=3n | | 2r+17=25 | | -8/3×x=9 | | 5x-27+8x-26=90 | | 1/3=5/12x=3/4 |